Environmental toxicity evaluation of PET-Ag new polymeric nanocomposites with multitrophic bioassays batteries

Eva Araque¹, Ana Guillem¹, Carlos Fito, Oscar Andreu²

 ¹ Instituto Tecnológico del Embalaje, Transporte y Logística. Albert Einstein, 1. Paterna (Spain)
² Xenobiotics, S.L. Parc Científic Universitat de València. C/ Catedrático Agustín Escardino, nº 9. Paterna (Spain)

eraque@itene.com

Abstract:

In the packaging industry, silver NPs have attractive proprieties that make them appropriate for being combined with PET, the most commonly used polymer in this sector. Nevertheless, silver NPs have a potential ecotoxicity that could limit the use of PET-silver composite.

The characteristics of Sivler NPs, freshly made and weathered composite were analyzed. PET-Ag ecotoxicity was evaluated in organisms from different food chain levels and it was compared to Ag NPs ecotoxicity.

The composites possessed around 4 % of NPs stably and uniformly scattered in the polymeric matrix. ZnO NPs turned out to be extremely toxic to Pseudokirchneriella subcapitata and toxic to Daphnia magna and Brachionus plicatilis. PET-Ag was not toxic to any of the organisms, and its weathered form only presented a moderate toxicity to P. subcapitata.

This research is supported by the European Project 'NanoSafePack', a collaborative project funded under the 'Research For SME Association, SME-2011-2' Theme of the European Commission's 7th Framework Programme, managed by REA-Research Executive Agency ([FP7/2007-2013] [FP7/2007-2011]) under Grant Agreement No. 286362

References

Figures

Table 1. Ecotoxicity test conducted

Compartment	Organism	Endpoint*	Description	Standard
Freshwater	Daphnid (Daphnia magna)	LC ₅₀	Acute immobilisation test	OECD 202
Freshwater	Algae (Pseudokirchneriella subcapitata)	NOEC	Freshwater algaeand cyanobacteria, growth inhibition test	OECD 201
Estuarine/ marine water	Rotifier (Brachionus plicatilis)	LC ₅₀	Acute mortality of the test organisms	ASTM E1440-91
Sediment/ soil	Earthworm (Eisenia foetida)	NOEC – EC ₅₀	Acute mortality of the test organisms	OECD 2007

Soil	Higher Plants (Monocotyl Sorgho - Sorghum saccharatum)	Decrease seed germination	3 day germination and root growth inhibition test	ISO 11269-1, OECD 2008
	(Dicotyl garden gress - Lepidium sativum) (Dicotyl mustard - Sinapis alba)	Growth inhibition		

* $LC_{50} = M$ edian lethal dose; NOEC = No Observed Effect Concentration; $EC_{50} = Half$ maximal effective concentration